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Not exactly an apology. ..

David Vogan

Introduction

| retained the announced title
Characters of unipotent representations.
But this talk is really about more basic questions:
1. What is a unipotent representation?
2. Why should | care?
3. (Having understood the answers to (1) and (2)) how can |

devote all of my mathematical energy to unipotent
representations?

The tools | will discuss are certainly relevant to
character theory, but | won’t say how.

See, | told you it wasn’t an apology.



Gelfand’s abstract harmonic analysis
Topological grp G acts on X, have questions about X.
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Introduction

Step 1. Attach to X Hilbert space H (e.g. L2(X)).
Questions about X ~» questions about H.

Step 2. Find finest G-eqvt decomp H = &, H,.
Questions about H ~» questions about each H,,.

Each H, is irreducible unitary representation of G:
indecomposable action of G on a Hilbert space.

Step 3. Understand au = all irreducible unitary
representations of G: unitary dual problem.

Step 4. Answers about irr reps ~» answers about X.

Toshi’s work addresses many parts of Gelfand’s
program in many ways.

Today: Step 3 for reductive Lie group G.



What does @u look like (part one)?
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Most irr unitary reps of reductive G «~ proper Levi fniroduction
subgroups L c G by induction.

Two ways this happens. . .

Real parabolic induction:

1.

o~ 0D

6.

L = centralizer of hyperbolic Lie algebra element X.
X ~» P = LU real parabolic subgroup.

mL€ Ly~ ng = Indg(m).

Think of 7, € family {x, ® . | x. unitary one-diml of L}.
ng always finite direct sum of irr unitary reps.
usually (almost all twists y) ng is irreducible.

Unitary 1-diml reps of L = union of real vec spaces.
So this part of unitary dual is finitely many pieces

Gy > reps of L x (real vector space).



What does @u look like (part two)? David Vogan

Here is the second way that irr unitary reps of Iniee LEieT
reductive G arise from proper Levi subgroups L c G:
Cohomological parabolic induction:

1. L = centralizer of elliptic Lie algebra element Z.
2. Z~ q=1+uc gc 6-stable parabolic subalg.

3. Think of 7, € family
{mrL ® x1 | x1 unitary one-diml of L}.

4. mp ezu ~> g = Ly(n,) virtual G rep.

5. if 7, ® y, appropriately positive, then ng = L3(n.) is
finite direct sum of irr unitary reps.

6. usually (most pos twists y;) ng is irreducible.

In this case unitary 1-diml of L = union of lattices.
So this part of unitary dual is finitely many pieces

Gy > reps of L’ x (cone in a lattice).



This is most of G,. . .
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Introduction

You may know about the irreducible unitary
representations of SL(2,R), which were classified by
Valentine Bargmann in the 1940s. Here’s the list:

Spherical princ series meven(iv) = meven(—iv) (v €R).
Nonspherical princ series moqd(iv) = moga(—iv) (v € R).

The nonspherical representation mo4q(0) is a direct sum of two
irreducible representations n*(0) and =~ (0).

Holomorphic discrete series 7t (n) (ne{1,2,3,...}.
Antiholomorphic discrete series n=(n) (ne{1,2,3,...}.

These four families (two real vector spaces, two cones in a
lattice) are most of G,. What remains are

Complementary series meven(t) (0 <t<1),and

Trivial representation meyen(1).



Unipotent representations
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Unipotent reps

Unitary representations for any real reductive G:
1. finite # pieces (unitary dual of smaller group) x R2:
unitarily induced.

2. finite # pieces (unitary dual of smaller group) x N?:
cohomologically induced.

3. finite # small polygons:
deformations of unipotent representations

So everything is described by structure theory/recursion in
terms of unipotent representations.

The most fundamental problem in unitary representation
theory is describing unipotent representations.

Idea originates in work of Dan Barbasch in the 1980s.



What’s a unipotent representation?
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Unipotent reps

So far we have a very small list of examples:

1. trivial representation of any real reductive G
2. any rep of infl char zero of any real reductive G

Here are a few more:

3. metaplectic reps of Sp(2n, C); more generally
4. ladder representations of various simple G.

How to characterize unip reps? Look for more?

Two key properties:

1. rep is small as possible among similar reps
2. infl char small as possible among similar reps.

Example: trivial rep smallest among fin-diml reps.
Example: zero is smallest infl char among all reps.



What's a family of similar representations?

David Vogan

Translation fams
First example: some principal series reps.
G = SL(2,R). For each integer n, have a rep

©p(n) = induced from yn (é tx1) ="

infinitesimal character of ©,(n) = n
©p(N)lsoe) = chars of SO(2) = n (mod 2)

So all reps ©,(n) are approximately same size
©p(0) has smallest infl char.

Conclusion: ©,(0) is unique unipotent one.



What's a family of similar representations?
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Second example: finite-diml reps.
G = SL(2,R). For each integer n, have a virtual rep Translation fams
. t—t"
©¢(n) = rep with character ——
infinitesimal character of ©¢(n) = n
irr of dimension n (n>0)
©¢(n) = {minus irr of dimension -n (n < 0)
zero representation (n=0)

-n+1,-n+3,...,n-1 n>0)
©¢(n)lsoy = {minus (-n+1,-n+3,...,n-1) (n< 0)
zero =0

—

So rep ©¢(1) = trivial rep is smallest, and
©¢(1) has smallest infl char (among nonzero reps)
Conclusion: ©¢(1) is unique unipotent one.



What's a family of similar representations?
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Third example: discrete series reps.

Translation fams

G = SL(2,R). For each integer n, have a virtual rep

sin(no)
sin(6)

infinitesimal character of ©,(n) = n

©p(n) = rep with char — on compact Cartan

hol disc ser of HC param n  (n > 0)
©n(n) = {disc ser plus irr —n-diml (n<0)
hol limit of disc ser (n=0)

On(Mlsozy= n+1,n+3, n+5...

So all reps ©4(n) = are similar in size, and
©4(0) has smallest infl char

Conclusion: ©,(0) is unique unipotent one.



Where we are
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Translation fams

Would like to realize each irreducible representation
np of G as one point 7p = ©(1p) in a nice family
A+ O(A) of virtual representations.

To look for unipotent representations, minimize
infinitesimal character over the family ©.

Next: construction of nice families of representations.



Translation families: background

David Vogan
G real reductive, g = Lie(G) @ C > b Cartan subalg.
Structure of G(C) ~» dual lattices X.(H) c b, X*(H) c b".
W = W(g,b) c Aut(X*) Weyl grp, finite reflection grp.

Translation fams

Theorem (Cartan-Weyl).

1. Restriction to H(C) of any algebraic rep F of G(C) is a
W-invariant multiset A(F) c X*(H).

2. If Firreducible, then A(F) contains (with mult one) a
unique W-orbit W - u(F) of largest weights.

3. F — u(F) is bijection (irr alg reps of G(C)) & (X*/W).

Theorem (Harish-Chandra).

1. Center 3(g) of U(g) is isomorphic to

S(h)" = W-invariant poly functions on b*.
2. Homomorphisms 3(g) — C «v» b*/W.
3. Action of 3(g) on any irr g-module X «» A(X) € b*.

(W-orbit of) A(X) is the infinitesimal character of X.



Transl fams: def by Jantzen/Zuckerman

Here’s a general definition of nice family of similar reps.
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Definition (Jantzen, Schmid, Zuckerman). Suppose H c G
is a Cartan in a real reductive group, and X* = X*(H) c y*  Tanslation fams
is the character lattice. A translation family is a map

©: g + X* — virtual reps of G,
with the following properties:

1. (each irr constituent of) ©(1) has infl char 4;
2. if F is a finite-diml algebraic rep of G, then

O ®F = > O(1+p).
ueA(F)
So © is a family indexed by infl chars in 1o + X* c b*.
Change 1 in © «» tensor with fin diml reps of G.
Theorem (Jantzen, Schmid, Zuckerman) Suppose np is a
finite length virtual rep of infl char Ao.

1. Jtranslation fam © on 19 + X* with ©(1g) = 7g.
2. If Ag is regular (meaning W' = 1) then © is unique.



Families of translation families (part one)
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H c G, 1o € b* infl char, X* c h* char lattice.
Write G(/lo) (finite) set of irr reps of G of infl char Ao.

Recall that a trans fam based on Ay + X* is a function from Fams of trans fams
Ao + X* to virtual reps of G.

Since virtual reps can be added and subtracted,
F (o + X*) = all trans fams based on 1y + X~

is an abelian group: add and subtract values of ©.

Jantzen-Schmid-Zuckerman uniqueness thm —

Corollary Suppose 1; € A + X* is regular. Then
evaluation at Ay: 7 (1o + X*) = ZG(44)

is an isom. So F (1o + X*) is free/Z, rank = #G(1;).

The finite-rank Z module 7 (1o + X*) is the family of
translation families in the slide title.



Families of translation families (part two)

F (1o + X*) = all trans fams based on 1 + X",
free abelian group, natural basis indexed by 6(41 ).
What other structure does this abelian group carry?
Weyl group W = W(G(C), H(C)) acts on b* preserving X*.
But W may not preserve 1o + X*. Integral Weyl grp for Ag is
W(20) =gef {Ww € W | w-2o € Ap+(lattice of roots of Hin G)};
the group W(1) is same for all 1 € 19 + X*.
W (o) preserves the coset g + X*.
Therefore W (1) acts on F (1o + X*) by

(w-0))=0w'-1) (1ei+X).

This integral representation of t’r]e integral Weyl group is
the key to character theory for G(Ao).

David Vogan

Fams of trans fams



The t invariant

We fix an infl char Ao € b*, with integral Weyl group
W(Ao) ={w e W | wiy — A € (root lattice)}.
The integral root system is
R(10) = {a € R(G,H) | {(a", Ao) € Z).

Fix also a positive system R*(1y) c R(1o) making 1o weakly
dominant, and A4 € 1o + X* strictly dominant.
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The repn of W(1p)

M(A0) = simple of R (o), S(A0) = (s, | @ € N(Ag)} € W(Ap).
WKkly dom elts of 4o + X* are a fund domain for W(4o).

Trans fam © is irreducible (with respect to R* (1)) if ©(1) is irr
for alldomreg 2 € 1o + X*.

Irr fams are a basis for (1o + X*), identified with G(.;).
Definition (Borho-Jantzen-Duflo). The 7-invariant of an irr © is

7(0) ={se€ S(1) |s-©=-06).
Theorem Suppose E c S(1) ~ W(E) c W(4o) Levi.

[sgn(W(E)) : (1o + X*)] = #lirr © | E c 7(©)}
[triv(W(E)) : F (1o + X*)] = #lirr © | E n7(©) = 0}.



Cones and cells of irreducibles
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Continue with pos int roots R (1p) making 1o wkly dom.
For e E—I(/lo), write ©, = unique irr fam with ©,(1y) = 7.
The cone over nis
C(r) = {all irr constituents of all ©,(1) | 1 € 1o + X*} Ul P @l W)

={n' € G |7’ isanirrconstof 7® F,
some irr alg rep F of G(C)}.
Write 7’ <g n if 7’ € C(x), a partial preorder on G.
7 <gn = AV(x') c AV(x).
The cell of is
C(r) = {allirr n’ with 7’ <g 7 <o 7’}
={r € G| n'isanirrconstof 7 ® F,
andranirrconstof ©’ ® E,
some irr alg reps E, F of G(C)}.

Write 7’ ~g nif 7/ € C(x), an equivalence relation on G.



More about the W(1y) representation

Continue with pos int roots R*(1y) making 1o wkly dom.
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Definition (Kazhdan-Lusztig) Make irr trans| families a directed
W (1o)-graph with edge of weight m from ©, to ©,, whenever
1. 7(n) ¢ 7(x’), and
2. dimExt'(n,7’) = m. The repniof W(4o)
An edge from ©, to ©,, implies 7’ <¢ 7.
Conversely n’ <¢g 7 = T directed path ©, to ©,..

Theorem (Lusztig-Vogan) Say ©, irr transl fam on 1, + X*, and
s € S(4p) is a simple reflection. Then

-0, (set(m)
§0,=1 O + D MmO (s¢r(n)

o e—m
ser(n’)

Corollary The W(1) graph determines the W(4,)
representation on translation families. Each cone C(r) spans a
W(1o) subrepresentation, so the cell C(r) carries a natural
quotient representation X () of W(A1).



What does the cell representation tell you?
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Continue with pos int roots R*(1y) making o wkly dom.
Smallest (weakly dom) infl char in 2; € 2o + X* is typically very
singular: that is, fixed by large set Sy of simple reflections.
Proposition Cell C(r) contains some irr ©,, nonzero at 4y < The repn of W(o)

[triv(W(S1)) : Z(n)] > i0.
So X () determines smallest infl char in C(r).

Theorem (Joseph, Lusztig).
1. Irr W(o) reps in X(x) are in a Lusztig family in W(1p).

2. Family has a unique special rep oo(r) € VV(TO).

3. oo(n) is Springer for a special nilpotent orbit Og(r) c g(1)*.

4. Lusztig's truncated induction of o(r) ~ Springer rep
o(n) e W, and so a nilpotent orbit O c g*.

So X () determines GK dimension of x.
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